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Introduction

According to the Oxford dictionary online, a factory is “[a] building or group
of buildings where goods are manufactured or assembled chiefly by
machine.” To use the word “factory” in conjunction with “data,” one can
interpret the idea of “data factory” as a virtual arrangement or group of
arrangements where big data sets are produced, aggregated, recombined,
and/or repurposed mainly by cyberinfrastructure. The meta-platform of
cyberinfrastructure includes open source software, visualization systems,
remote instruments, distributed sensors, high-speed networks,
supercomputers, communication technologies, and the multidisciplinary
experts involved in the aggregation of big data and the production of
knowledge based on the data (Atkin et al. 2003; Kee et al. 2011). Towns et al.
(2014) refer to these also as advanced digital services for research and
education with big data.

In the metaphor of a factory, an important point is that raw materials get
turned into useful products through material manipulations and industrial
treatments. Similarly, in a data factory, raw digital data get turned into
meaningful insights through computational processing and data analysis. A
critical component in data factory is the software that preprocesses and
analyzes raw digital data. In fact, many results from the analysis of big data
depend on and/or are tied to specific software applications. Therefore,
insights drawn from big data are software dependent; without good and
appropriate software, the hidden insights in big data cannot be fully tapped.

Additionally, the metaphor of a factory also conjures up the notion of
“standardization,” a practice made commonplace during the industrial
revolution with the introduction of Taylor’s scientific management and time
and motion studies (Miller 2008). Standardization is important to the idea of
data factories, as the standardization of data format and the interoperability of
data make data aggregation, recombination, and repurposing for even larger-
scale analysis possible. Therefore, a piece of good software should be
designed to be easily adopted and widely diffused in order to facilitate the
standardization and interoperability of data for data factories.

While much attention has been given to big data as the raw materials that
have hidden insights, limited attention has been given to the open source
software that turn raw materials into powerful insights. However, without



successful design, development, adoption, and implementation of useful
software, raw materials will remain raw materials with hidden insights.
Metaphorically, a factory full of raw materials without machines to process
them is just that — a factory full of raw materials. A factory full of raw
materials processed and assembled in a meaningful way can turn the rawness
into usefulness. Therefore, intentional and strategic efforts should be carried
out to promote wider adoption of good software applications.

The purpose of this chapter is to explore what drives the adoption and
diffusion of open source software that can usher in the vision of data
factories. With the adoption of good software applications across the
community, researchers can begin moving individual data sets developed by
independent projects across geographic locations and disciplinary domains
into a broader data ecosystem sustainable over the long term. The data
ecosystem should also be easily accessible and used by present and future
researchers not directly involved with data collection and documentation of
the individual data sets.

In order to achieve the stated goal for this chapter, it is organized with the
following sections. First, the concepts of data, big data, and e-research are
defined. Second, the largest National Science Foundation’s (NSF)
supercomputing consortium, XSEDE (Extreme Science and Engineering
Discovery Environment), is discussed as a specific case of a data factory.
Third, based on interviews conducted with community stakeholders of
XSEDE, ten drivers of open source software adoption are discussed along
with associated critical questions to promote intentional design of software
for successful diffusion in the larger research community. Finally, a
conclusion with implications wraps up the chapter.



Data, Big Data, and e-Research

Schroeder (2014) defines data as the materials that belong to the object(s) or
phenomenon(a) of investigation and that data are the most useful unit of
analysis for the investigation, which involves data collection before the
interpretation. To take it further, Meyer and Schroeder (2015) argue that
when a data set is a magnitude larger than any other existing data sets in size
and scope within a given domain, the data set is qualified as big data.
Furthermore, they suggest that big data represents a new form of
collaborative interaction with and around materials for research. The idea is
that big data do not exist simply as materials; they require multidisciplinary
experts to collaborate in order to harness big data for important insights.

Besides the scholarly definition of big data offered by Schroeder and
Meyer, big data is more commonly defined in the industries by several
keywords that begin with the letter V. More specifically, the concept of big
data was defined by what was first known as the three Vs of big data:
volume, variety, and velocity (Laney 2001). The first V of volume refers to
the size of the data, and it is often measured in terabyte and petabytes. This
characteristic is almost intuitive, as the volume is what makes a data set big
or bigger than other existing data sets in a given domain. The second V of
variety indicates that big data have a range of data formats, often referred to
as structured and/or unstructured data. If a big data set is made up of simply
structured data, its aggregation, recombination, and analysis are relatively
straightforward. If a big data set consists of mainly unstructured data,
computational analysis will require a lot of data cleaning and conversion, in
order to create format consistency (which is also known as the
interoperability of data). This is critical for the need of recombining and
repurposing of previously isolated data sets from independent projects. The
third V of big data is velocity, which refers to the speed at which data are
produced and processed. The production and processing of big data are
usually in real time or near real time. It is also this characteristic that gives
big data the currency and dynamic advantage over traditional dated and static
data.

Recently, Gandomi and Haider (2015) further argue that big data possess
three additional Vs of variability, veracity, and value. Variability describes
the flow rates of big data as fluctuating, unpredictable, and erratic. The



fluctuation of big data’s flow rates is due to the fact that big data sets usually
are the aggregated results of data coming from various sources. Therefore,
big data usually show periodic and sporadic ups and downs in flow rates. The
next V of veracity implies that despite big data’s inexactitude, imprecision,
and uncertainty, they hold significant and hidden insights. The insights
require strategic harnessing by humans and machines. Finally, the last V of
value signifies that there is important worth that can be drawn from big data’s
large volume. As previously mentioned, the large volume of big data is the
obvious defining characteristic of big data. Although the large volume of big
data, often measured in terabytes and petabytes today, is commonly used as
the primary definition of big data, Gandomi and Haider argue that the notion
of volume is relative — what is regarded as big at the present time may be
small in the future.

Given Gandomi and Haider’s point above, perhaps the definition offered
by Mayer-Schénberger and Cukier (2013) can be added to the list of defining
characteristics. They argue that a data set is considered big data when the size
of a sample drawn from a population is equal to the size of the entire
population (i.e., N = all). Their argument stems from big data analytics’
departure from the traditional practice of sampling and inferential statistics
when it was impossible to obtain and/or analyze population data of an entire
organization, community, country, or social system. Due to previous
limitations in terms of data collection, researchers carefully drew a sample for
analysis and then appropriately inferred from the sample certain insights
about the population. This inference was determined by statistical
calculations and probability. However, since population data can be obtained
today, sometimes through passive data recording, there is no longer a need to
simply draw a sample. Moreover, data analysis was previously limited to
what a single computer can process. Given today’s network capability, big
data set can be processed by a network of supercomputers, such as in the case
of the Extreme Science and Engineering Discovery Environment (XSEDE).

In summary, big data can be defined by volume, variety, velocity,
variability, veracity, and value. These six Vs have also been reduced to
simply the five Vs (volume, velocity, variety, value, and veracity) of big data.
Today, the five Vs are widely used to define big data, such as in the call for
papers by the 2016 IEEE Big Data conference in Washington DC. The main
characteristic of volume can be understood also as when the size of the
sample is equal to the size of the population or when the volume is at least



one magnitude bigger than the size and scope of other existing data sets
within a given domain. Finally, big data present the need for
multidisciplinary collaborations with and around the data.

What is the purpose of big data then? Meyer and Schroeder (2015) offer
the answer that big data are being used for e-research (Borgman 2010; Dutton
and Jeffreys 2010). They define e-research as “the use of shared and
distributed digital software and data for the collaborative production of
knowledge.” They use the term e-research to be inclusive of e-science,
computational social science, digital humanities, and any other computational
analyses of big data for advancing knowledge by collaborative researchers.
Interestingly, their definition of e-research has an emphasis on the
collaborative nature of knowledge production. In other words, if a researcher
simply digitalizes the data (e.g., scanning images of historical manuscripts for
computational analysis) for personal use, and the researcher does not share
the digitized manuscripts with a wider community of researchers, this
researcher’s work does not fully qualify as e-research. The emphasis of the
collaborative nature of e-research is critical for the notion of data factories, as
these factories are set up to support open innovations.

The challenge of volume can be addressed by high-performance
computing (HPC) and/or high-throughput computing (HTC). When a data set
is too big and a single desktop computer cannot process the data (i.e., choked
and frozen when the “process” button is pushed), a researcher can apply for
an allocation to access HPC and/or HTC at national resources, such as
XSEDE. Therefore, the major challenge addressed by the data factory
metaphor is that of variety. Metaphorically, a producer of goods made the
goods from start to finish before the industrial revolution. Because the
process was done by a holistic approach, each product was unique. While the
uniqueness may be celebrated by some, the variety can be a problem when
there is a need to aggregate, recombine, and repurpose them.

Taking a pro-innovation and innovation diffusion stance, this chapter
presents the purpose of data factories as threefold. First, it is about
standardization and interoperability to reduce the challenges that come with
big data’s variety and variability. Second, it is about having centralized data
repositories and computational resources to process big data, supporting big
data’s volume and velocity. Finally, it is about creating and maintaining a
thriving and collaborative community around open innovations, so big data’s
veracity and value can be fully realized. Given the purpose discussed, the



next section presents XSEDE as a specific case of data factory.



XSEDE as a Data Factory

The Extreme Science and Engineering Discovery Environment (XSEDE,
www.xsede.org) is the largest supercomputing consortium that provides
computational resources and expertise for data-intensive research and
education in science, engineering, social sciences, and humanities in the
USA. XSEDE consists of more than 20 supercomputers and resources for
advanced visualization and analysis of big data. The consortium is led by the
National Center for Supercomputing Applications at the University of Illinois
at Urbana-Champaign, and it includes partner centers such as the Texas
Advanced Computing Center at the University of Texas at Austin, the San
Diego Supercomputer Center at the University of California at San Diego,
and universities such as Purdue University and University of Southern
California, to name a few (for a full list, please visit https://www.xsede.org/
leaders). These partner institutions each contribute one or more allocatable
services to the consortium.

XSEDE is funded by the Office of Advanced Cyberinfrastructure (OAC)
of the NSF’s Computer and Information Science and Engineering (CISE)
Directorate to continue advancing NSF’s efforts in providing a national
infrastructure to support the e-research community and cyberinfrastructure
ecosystem started by the TeraGrid (2001-2006) and TeraGrid2 (2006-2011)
projects (for information on TeraGrid and TeraGrid2, please see Lawrence
and Zimmerman 2007, Towns 2011, and Zimmerman and Finholt 2006).
Launched in July 2011 and funded at about $125 million for 5 years, XSEDE
transitioned into XSEDE2 in September 2016 for another 5 years with a new
round of funding at about $92 million. Similar to TeraGrid and TeraGrid2,
XSEDE provides all the resources and support at no cost to the e-research
community. XSEDE?2 will continue in this approach to support big data and
open innovations in the USA.

The goal of XSEDE is not simply to provide supercomputing power; the
goal also includes the goal to provide a comprehensive and cohesive set of
distributed infrastructure, digital services, support services, and technical
expertise to enable e-research and cyberlearning (Towns et al. 2014).
Broadly, XSEDE has supported researchers in computational finance,
genomics, epidemiology, digital humanities, and social network analysis.
Notable examples of groundbreaking research supported by XSEDE include
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a study of high-frequency trading in the US stock market (see O’Hara et al.
2014) and the hydrogen sorption in a metal organic framework (see Pham et
al. 2013), to name a couple. More importantly, based on theoretical
assumptions from classical and quantum mechanics, the use of XSEDE’s
predecessor was utilized for performing the simulation and prediction of the
behavior of biomolecules, a study that led to a discovery that awarded Martin
Karplus, Michael Levitt, and Arieh Warshel the 2013 Nobel Prize in
Chemistry. Their computational simulation was innovative in taking
chemistry research outside of the traditional laboratory (Towns et al. 2014).

XSEDE stores tens to hundreds of petabytes of data, supports a few
hundreds of software packages, as well as provides training and services to
more than 10,000 researchers and 2500 projects across all 50 states to harness
big data for research discovery and knowledge production. XSEDE also
supports international researchers from over 100 universities in more than 35
countries who collaborate with the US researchers XSEDE directly supports.
XSEDE is an exemplar of a data factory, as Towns et al. (2014) explain — the
purpose of XSEDE is for:

Making codes run faster and more easily allows researchers to get more
science done in a fixed amount of time. Lowering the barrier for access
to and use of digital services enables additional research in established
communities and in new communities who haven’t harnessed these
services to date. Such productivity increases can be the difference
between an infeasible project and a feasible one, reducing the time to
publishing scientific findings.

The notions of efficiency and productivity, two characteristics of the
machine metaphor of industrial revolution (Miller 2008), are prominent in
XSEDE.

As previously stated, the idea of “data factory” can be interpreted as a
virtual arrangement or group of arrangements where big data sets are
produced and aggregated mainly by cyberinfrastructure. A key feature of
cyberinfrastructure is the open source software applications necessary for
processing big data. Understanding the adoption drivers that promote
diffusion of these software applications is important because existing efforts
should not be wasted and new users do not need to reinvent the wheel.
Furthermore, wider diffusion of good software will also help create



standardization and interoperability of data, further promoting the vision of
data factories. Standardization can reduce idiosyncratic measures, and data
formats, instead, move data from isolated projects and locked box
repositories more easily into a longitudinal data warehouse associated with
certain data factories. Finally, with wider adoption, more data can be
aggregated, recombined, and integrated to perform analysis at unprecedented
scale, to tackle big problems previously limited by the volume and variety of
data and the limitation of existing software and supercomputing resources.
The ultimate outcome of a pro-innovation diffusion effort in this sense can
lead to more innovations and breakthroughs that benefit societies and
humanity worldwide. In order to promote diffusion, the next section explores
the ten drivers that promote the adoption of open source software for data
factories and open innovations within the XSEDE community.



The Ten Adoption Drivers of Open Source Software in
XSEDE

The ten drivers discussed in this section were identified in an analysis based
on 135 in-depth interviews with domain researchers (as technology users),
computational technologists (as software developers), and center
administrators (as data center leaders) who consider themselves stakeholders
of the XSEDE community (for more details, see Kee et al. 2016). The
interviews were systematically analyzed using the grounded theory approach
(Glaser and Strauss 1967; Kee and Thompson-Hayes 2012; Strauss and
Corbin 1998). The ten drivers are also discussed with critical questions from
the perspective of potential new users. These questions represent the kind of
issues that stakeholders should keep in mind while designing and promoting
their software within the larger research community to support data factories
and open innovations.

Driven by Needs

The first adoption driver is the software’s ability to meet users’ existing
needs. While research to date is still inconclusive about if users’ needs drive
innovation (see von Hippel 2005 on how lead users created innovations to
meet their own needs) or an innovation creates a market for an unknown need
(see Daly 2011 on how iPod created a completely new market), the
development and adoption of open source software for big data are usually
driven by known needs in the research community. This is because big data
usually exist before the software to process them is available, and the
software is designed to harness existing data. The segment that makes up the
potential user market are busy professionals who do not have time to adopt a
piece of software simply for personal enjoyment, but for a compelling reason,
such as a pressing problem that represents a dire need for a solution.
Furthermore, the design and development of open source software can be
very time consuming and financially expensive. This is why many software
applications are developed by federally funded projects for 3-5 years (Kee
and Browning 2010), such as those supported by NSF’s OAC. In these
projects, if the inception teams are not able to articulate a compelling
rationale with clear reasons for the need to develop a piece of software for



research, the projects would not be funded by NSF and other federal agencies
(such as the Department of Energy, National Institutes of Health, National
Oceanic and Atmospheric Administration). The rationales are often based on
grand challenges and critical problems well-documented in the research
literature. Therefore, in order for a piece of open source software to widely
diffuse, it needs to clearly meet the needs of potential users and the
community/funders behind their work. In fact, in their discussion of XSEDE,
Towns et al. (2014) open the article by stating that the establishment of
XSEDE itself was “[d]riven by community needs.” Therefore, a critical
question stakeholders should keep in mind that a potential user may ask is
“Does this software meet my needs?”

Organized Access

Once there is a compelling need, potential users require organized access to
find the open source software they may adopt. The notion of organized access
is not simply having an online link to download a piece of software; the
notion includes having a systematically designed location (usually a website,
such as HUBzero at https://hubzero.org/ and Galaxy Tool Shed at https://
toolshed.g2.bx.psu.edu/) where inception teams post their software, active
users rate, review, and comment on the software and potential adopters read
about the software online easily. The website should be designed to facilitate
a vibrant community where the interactions among different groups of
stakeholders (inception teams, active users, and potential adopters) come
together to carry a piece of open source software forward.

Having organized access to an online marketplace where the marketplace
is well known is important for diffusion. This driver is important for data
factories as the community of users need to participate in the marketplace in
order to generate open innovations collectively. A piece of diffusing software
has to have a strong web presence, and it can be located at a known
marketplace that is open and organized for a community of users. Therefore,
the critical questions stakeholders should keep in mind that a potential user
may ask are “Is the software easily available?” and “Can I find the software
at a known location?”

Trialability

The third adoption driver of a piece of diffusible open source software is that
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it allows potential adopter to try it out before full adoption. Many open
source software applications in e-research to date have a high degree of
trialability because they are open sourced. These software applications are
different from their propriety counterparts in that all the source codes are
freely open, so interested developers and savvy users can add to the software
and extend the software features based on their existing needs. In other
words, being open sourced allows for open innovations and ecologically
driven evolution of software. This is an important point for trialability
because it is often during the open trials that potential adopters cultivate an
understanding of the software and how it works, what it means for them in
their particular contexts.

The notion of trialability is important for data factories because the notion
of open innovation is eventually driven by open free trials and organic
contributions. Within the community of e-research and open innovations,
members subscribe to the open sharing philosophy. Once a piece of software
is aligned with the potential users’ philosophical orientation, the software
should also be easily implemented for a trial without too much learning time.
A steep learning curve will discourage adoption. Therefore, the critical
question stakeholders should keep in mind that a potential user may ask is
“Can I try this software without much time investment?”

Well-Documented

Documentation refers to having a complete record of how the software was
developed, instructions on integrating and using the software, the decisions
that went into the design, the updates, and exemplars of how the software has
been successfully used to solve different big data problems. A piece of
software that is well documented not only offers potential adopters simply
basic information to download the software, it offers a learning environment
that is akin to a fully developed course on a piece of software. In other words,
the documentation cannot be outdated and/or skeletal. Otherwise, another
software with better documentation will likely attract more active users and
potential adopters.

Being well documented is also an important characteristic for data
factories, because the community members for open innovations are diverse,
and the vision is to maintain long-term data and technologies that allow
longitudinal analyses. Even when the pioneering stakeholders are no longer
alive 100 years from now, their well-documented software applications can



continue being updated and used by future researchers. Therefore, the critical
question stakeholders should keep in mind that a potential user may ask is “Is
the software well documented with a complete track record and robust user
guides?”

Community Driven

Building on the adoption drivers of trialability and being well documented as
discussed above, the more people can try out a piece of software with helpful
documentations, the more active a community will develop around the
software. The open sourced nature continues to manifest in the adoption
driver of being community driven. The open source philosophy does not only
give innovations freely to a marketplace, it empowers a community of
stakeholders to rally around the software. The source codes are open online;
this allows many savvy users, potential adopters, and interested developers to
participate in trying out the software, integrating the software, fixing the
bugs, updating the codes, improving its functionality, and extending its usage
to new problems and contexts previously not considered by the inception
team.

Shirky (2009) beautifully elaborates on Eric Raymond’s notion of “a
plausible promise” — the promise that the original developer will not take
advantage of community contribution for personal financial gain. A plausible
promise is what gives community members the reason to join and contribute
to the community. The driver of community driven is fundamental to data
factories for open innovations. It is also this driver that gives future adopters
the confidence that the software will continue to thrive with the support of the
community. Therefore, the critical question stakeholders should keep in mind
that a potential user may ask is “Is there a thriving community that will carry
this piece of software forward for the long term?”

Observability

The next adoption driver is observability. The notion of observability
manifests in terms of how often near peers talk about a piece of software (i.e.,
word of mouth), how frequently the software is showcased in research
presentations and/or demonstrations at a conference (i.e., community
visibility), and its success in enabling good research and producing useful
results (i.e., citation index). The notion of observability based on the three



dimensions of word of mouth, community visibility, and citation index
allows a piece of software to create the impression that the software has a
strong potential to be useful for potential adopters.

The driver of observability is also important for data factories and open
innovations because the contribution to and access to repositories depends on
whether community members are aware of the software and related data
archives. The more observable the software is, the more likely it will attract a
group of stakeholders around it. Therefore, the critical question stakeholders
should keep in mind that a potential user may ask is “What software are my
peers using, and how are they using it?”

Relative Advantage

The adoption driver of relative advantage refers to a piece of software’s
ability to outperform an existing software in multifold. It is important to note
that potential adopters are often entrenched in their existing technologies.
Therefore, it is difficult or painful for them to transition. The new open
source software has to offer a multifold advantage for potential adopters to
overcome their resistance to avoid pain during a software transition.

In the case of open source software, a large segment of potential adopters
are not existing users of other open source software, but potential adopters of
the computational approach to gain insights from big data. In other words,
these individuals have to be convinced not simply that the software is going
to help them do their work better, but that the computational approach and
big data will help them solve problems that are bigger in scale and more
complex in scope or to solve a problem that otherwise cannot be solved with
their existing technologies and approaches based on sampling techniques and
samples drawn from larger populations of interest.

The driver of relative advantage is also important for data factories
because the idea of open sharing an open innovation is still relatively new for
the traditional research community grounded in individual credits for hiring,
tenure, and promotion. The bundle of software, big data, and computational
approach need to appear a lot more beneficial than the traditional way of
doing research. Therefore, the critical question stakeholders should keep in
mind that a potential user may ask is “Is this software a lot better than what I
have right now?”



Simplicity

Simplicity is key to successful software adoption. Very few people will take
the time and effort to adopt a piece of complex software that is difficult to
learn. There are always some die-heart users who believe that to fully do
computational data processing, one needs to know the nitty gritty of
programming and supercomputers. However, these individuals make up a
small segment of the market place, possibly only those who are referred to as
“innovators” (2.5% of total population) in Rogers’ (2003) original diffusion
model.

Instead of the need to learn how to program like those previously referred
to as active and savvy users, there is now a steady effort in creating science
gateways to lower the barrier of entry (Wilkins-Diehr et al. 2008). Science
gateways are essentially open source software designed with a user-friendly
interface. According to the XSEDE website:

A Science Gateway is a community-developed set of software,
applications, and data that are integrated via a portal or a suite of
applications, usually in a graphical user interface, that is further
customized to meet the needs of a specific community. Gateways enable
entire communities of users associated with a common discipline to use
national resources through a common interface that is configured for
optimal use. Researchers can focus on their scientific goals and less on
assembling the cyberinfrastructure they require. Gateways can also
foster collaborations and the exchange of ideas among researchers.

As described above, with a science gateway, users can simply use the
point-and-click method to navigate and use the software to process big data.
According to Towns et al. (2014), more than 40% of XSEDE users in 2013
were users of one of more than 35 science gateways associated with XSEDE
in the same year. This portion of users is expected to continue growing over
time. Therefore, the critical question stakeholders should keep in mind that a
potential user may ask is “Is this software simple to learn and easy to use?”

Compatibility
The adoption driver of compatibility refers to a piece of software’s fit with a
potential adopter’s technological repertoire, behavioral practices, and



ideological orientation toward data-driven research. If the innovation is
disruptive (technologically, behaviorally, and ideologically), both for the
potential adopters and/or their collaborators, the innovation will suffer greatly
in terms of compatibility. As today’s researchers are heavily dependent on
their technologies, the further a new piece of software departs from their
existing routine and/or the norms in their disciplines, the more difficult it is
for the software to be adopted.

This driver is also important for data factories because in order for a
community of open innovations to thrive, it needs to attract many members.
A potential member may compare and contrast if his/her data format is
compatible with the format chosen by a data factory of interests. Without data
interoperability, the aggregation of data sets into a big data set is difficult.
The software and the data format go hand in hand for the adoption decision
by potential users. Therefore, the critical question stakeholders should keep
in mind that a potential user may ask is “Can I easily integrate this software
into my existing routine and collaborations?”

Adaptability

Traditionally, adoption with a deviation from the original purpose of a piece
of software is considered as “noise” in diffusion research. This bias is
understandable because a deviation does not count as a full adoption if a
researcher or manufacturer is interested in tracking “successful adoption” of a
new technology as originally designed. However, in the Web 2.0 era, a
deviation from the original purpose (such as in terms of adaptability,
repurposing, and reinvention) may aid in a piece of open source software’s
ability to diffuse. In other words, a piece of software’s ability to adapt and be
repurposed for a new problem and/or a new context may promote its wider
adoption ultimately.

The adoption driver of adaptability should not be left as simply a happy
accident. In fact, it can be an intentional diffusion strategy — a piece of
software is designed to repurpose across problems, contexts, fields, and
domains. Therefore, the critical question stakeholders should keep in mind
that a potential user may ask is “Can I take this piece of software from that
domain and bring it into my domain?” Table 5.1 below summarizes the ten
adoption drivers and associated critical questions as discussed above.

Table 5.1 The ten adoption drivers of open source software in the e-research community for data



factories and open innovations

Adoption
drivers

Critical questions

Driven by needs

“Does this software meet my needs?”

Organized “Is this software easily available?” and “Can I find the software at a known
access location?”

Trialability “Can I try this software without much time investment?”

Well “Is the software well documented with a complete track record and robust user
documented guides?”

Community “Is there a thriving community that will carry this piece of software forward for the
driven long term?”

Observability | “What software are my peers using, and how are they using it?”

Relative “Is this software a lot better than what I have right now?”

advantage

Simplicity “Is this software simple to learn and easy to use?”

Compatibility | “Can I easily integrate this software into my existing routine and collaborations?””
Adaptability “Can I take this piece of software from that domain and bring it into my domain?”




Conclusion, Discussion, and Implications

This chapter set out to explore the definitions of data, big data, and e-research
in the context of data factories for open innovations. The metaphor of a
factory for data is compelling as it implies key characteristics for data such as
standardization and interoperability and for open innovations such as
efficiency and productivity. The chapter presents the case of XSEDE as an
exemplar of a data factory in the USA. Most importantly, this chapter laid out
ten drivers that promote the adoption and diffusion of open source software
in the e-research community to usher in the vision of data factories and open
innovations. It is important to note that the ten drivers make up a need-based
diffusion model, a broader technology adoption framework. Although the ten
drivers were presented in a linear and sequential way, it is important to keep
in mind that they are interconnected and they influence each other in a
complex way at any given time.

The topic of software adoption is not simply a theoretical question; it is
also an important practical question. Instead of providing direct
recommendations for practice, the ten drivers were presented with associated
critical questions (see Table 5.1 for a summary) to prompt the stakeholders to
ponder upon and discussed the ten different drivers at any given point in
time. In a fast-changing world of technologies, a specific recommendation is
likely to be outdated in the foreseeable future. Furthermore, a
recommendation that works well in one particular disciplinary domain may
not work in another domain. However, by engaging with the critical
questions, stakeholders can come up with the best answers for themselves in
their given contextual and historical contexts. Therefore, the critical questions
are useful for facilitating stakeholders’ regular reflections on the challenges
and opportunities to promote their software applications for data factories and
open innovations.

While the focal point was on the adoption of open source software as a
technology, an important insight stemmed from the discussion above is that
the adoption decisions are multidimensional. Kee (2017) uses the adoption of
green technologies within the workplace as an example to make this point.
More specifically, the adoption of the green technologies also involves the
adoption of the recycling and/or conservation behaviors and the belief and
mindset that environmental sustainability is of critical urgency and



importance within the workplace. If the push to adopt a green technology
only focuses on the technology itself, the stakeholders are missing the critical
fact that the adoption of the technology is not complete without the adoption
of the associated behavioral practices and philosophical ideologies.

Similarly, the argument can be extended to the adoption of open source
software for data factories and open innovations. The potential adopters need
to be willing to modify existing practices to make the software fit into
existing routines and collaborations. The potential adopters also need to
strongly believe that open source software, data factories, and open
innovations are the ways of the future of research and knowledge production.
The adoption decision is multidimensional, as it involves the adoption of the
material objects (i.e., open source software, big data), the behavioral practices
(i.e., large-scale scientific collaborations, open sharing of data and
documentation), and philosophical ideologies (i.e., data factories, open
innovations). The adoption of one dimension without the others would be
considered incomplete. The case of XSEDE presents an interesting context to
study the diffusion of multidimensional innovations for adoption.
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